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1. SUMMARY 

 Track intrusion, especially trespassing, which encompasses unauthorized entry and lingering 

within the railroad right-of-way, is a significant safety concern. It has been associated with a higher 

number of fatalities compared to incidents involving collisions between vehicles and trains. This 

stark statistic underscores the urgent need for advanced surveillance and detection systems at rail 

crossings to ensure track integrity and enhance overall railway safety. This research aims to 

develop a novel Hybrid Region-based Convolutional Network (Hybrid-RCNN) that innovatively 

merges foreground segmentation and object detection methodologies to form a comprehensive 

railroad crossing surveillance system, as shown in Figure 1. 

 

Figure 1: Hybrid Region-based Convolutional Network (Hybrid-RCNN) architecture 

 

The design of the proposed Hybrid-RCNN model is strategically tailored to perform multiple 

functions simultaneously: foreground detection, segmentation, classification, and tracking of 

objects. This multifaceted approach allows for a more precise and efficient monitoring system 

adept at identifying and responding to any non-compliant objects or unauthorized activities within 

the railroad area. The integrated system not only detects but also classifies various types of objects, 

making it possible to differentiate between harmless elements and potential hazards. 

Our evaluation and testing phase highlights the effectiveness of the Hybrid-RCNN model. 

The findings from these experiments validate the robustness of the network, demonstrating its 
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superior capability to accurately identify and track unauthorized or non-compliant objects at 

railroad crossings. This enhanced detection is critical as it significantly surpasses the performance 

of traditional object detection models such as Mask-RCNN. Through a series of comparative 

analyses, the Hybrid-RCNN consistently outperformed existing models, proving its potential as a 

pivotal technology in railway safety systems. 

2. BACKGROUND 

Accidental intrusions at rail crossings represent a major threat to railroad safety. Over the past 

decades, numerous enhancements have been implemented to improve safety at rail crossings, 

including armed gates, upgraded road signs, barriers, traffic warning lights, and surveillance 

cameras [1]. Despite these advancements, many incidents still occur due to unpredictable 

trespassing, track fouling, and unintentional obstructions. Traditional surveillance methods are 

inadequate as they fail to detect obstacles at rail crossings and do not provide real-time alerts to 

both incoming trains and road traffic, encompassing both vehicles and pedestrians. 

In recent years, the rapid advancement of deep learning and artificial intelligence (AI) has led 

to significant success for Convolutional Neural Networks (CNNs) in various computer vision 

applications, including image classification, object detection, and semantic segmentation. The 

application of CNNs in enhancing railroad safety and track resilience has become increasingly 

popular. CNN-based models have significantly improved detection efficiency and accuracy, 

reducing human errors and supporting auxiliary decision-making. For instance, Zaman et al. 

utilized Mask R-CNN to detect intrusion events on the railroad [2]. Additionally, Guo et al. 

developed an automated video analysis detection and tracking system to assess traffic conditions 

at rail crossings [3]. Among these deep learning approaches, object detection and foreground 

segmentation are crucial for video surveillance, playing an indispensable role in ensuring safety at 

railroad crossings. 

Object detection involves identifying and pinpointing instances of specific object classes 

within an image or a video frame [4]. This technique primarily employs deep learning algorithms 

and convolutional neural networks to recognize and classify various objects such as cars, 

pedestrians, or animals, and to determine their boundaries or locations within the scene. By 

accurately detecting these objects, this method provides crucial information about their presence, 

position, and characteristics. Such data is essential for enabling further analyses such as tracking 
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or behavioral assessment [4, 5]. 

On the other hand, foreground segmentation, also known as change detection or background 

subtraction, is a technique designed to differentiate moving elements, known as the foreground, 

from the static scene, termed the background [6]. This differentiation is achieved by analyzing the 

differences between consecutive frames in a video sequence and identifying regions with 

significant changes, which are subsequently classified as the foreground. Foreground segmentation 

is especially valuable in applications where detecting and monitoring the movement of objects 

within an environment is crucial, such as in traffic monitoring or intrusion detection systems. 

While foreground segmentation effectively identifies all moving elements within a scene as 

foreground objects, it lacks the ability to classify or recognize these objects. This means that while 

it can detect motion, it cannot offer specific insights into the nature or type of the moving objects. 

On the other hand, object detection is capable of recognizing and classifying common objects like 

pedestrians and cars, thereby providing a more comprehensive understanding of the scene. 

However, object detection can struggle with uncommon or irregular objects, potentially leading to 

false-negative errors (where an object is not detected) or false-positive errors (where background 

objects are mistakenly identified as foreground). These limitations highlight the need for 

integrating multiple detection and segmentation approaches to enhance overall accuracy and 

reliability in object detection systems. 

To address the limitations of both foreground detection and object detection in video 

surveillance, this study introduces Hybrid-RCNN. This innovative approach synergistically 

combines the strengths of both foreground segmentation and object detection techniques. By 

integrating these methodologies, the Hybrid-RCNN is designed to concurrently perform 

foreground detection, segmentation, classification, and tracking. This integration results in a video 

surveillance system that is both more accurate and efficient, offering enhanced capabilities for 

identifying and monitoring various objects within a dynamic environment. 
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3. METHODOLOGY 

3.1 Foreground Detection RCNN 

Input head 

Instead of object detection and segmentation, the foreground detection RCNN of Hybrid-

RCNN performs foreground detection and segmentation. To achieve this goal, a simple 

modification is required, adding an input head to the existing Faster-RCNN architecture. This setup 

allows the foreground detection RCNN to accept both the current frame and background images 

as inputs. The model then executes foreground detection by comparing the differences between 

these two inputs. Worth noting is that the background images are generated and continually 

updated via the aforementioned SuBSENSE [8] algorithm. 

 

Figure 2: Input head structure of foreground detection RCNN 

 

Figure 2 shows the structure of the input head whose main function is to balance the 

weights of the video frame and background images. The video frame, an RGB image, comprises 

three channels, while the backgrounds generated by SuBSENSE consist of 50 RGB background 

images and 150 channels as a default. Direct concatenation of the video frame and background 

images as the network input could lead to an imbalance in the network's focus, as it would observe 

the background images significantly more than the video frames, thus making it challenging to 
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identify their differences. 

To address this, the input head balances the weight between the video frame and 

background images by converting them into feature maps of the same size. The input head has two 

branches, with each branch only containing one convolutional layer. The first branch is dedicated 

to the input frame, and the second is allocated for the 50 background images. Consequently, both 

the input frame and background images are converted into a set of feature maps with 32 channels. 

By concatenating these two sets, a 64-channel feature map is created. To avoid any modification 

on the backbone, a final convolutional layer compresses the 64-channel feature maps to a 3-

channel output, which then serves as the backbone input. 

No box head strategy 

Foreground detection RCNN is devoid of a box head. For foreground detection, the box head 

can be deleted due to its single-class detection task. In the inference stage, the results of foreground 

detection can be garnered by filtering the bounding boxes proposed by the RPN. As a result, these 

foreground boxes serve as the final boxes predicted by the Hybrid-RCNN. 

3.2 Object Detection RCNN 

In the training phase, the object detection RCNN doesn't require any modification and 

follows the standard training methods commonly employed by other object detectors. 

However, the inference stage presents a different scenario. Here, the object detection RCNN 

does not retain all network components. Specifically, the RPN, which generates proposal boxes, 

is set aside and not employed during the inference stage. Instead, only the backbone and RoI heads 

are kept in operation. 

The backbone serves as the key component of the network and is responsible for extracting 

features from the input images. On the other hand, the RoI heads are involved in classifying and 

tracking the foreground boxes. They achieve this by cropping the feature maps produced by the 

backbone using the foreground boxes predicted by the foreground detection RCNN. 

Box head 

During the inference stage, one role of the object detection RCNN is to classify the 

foreground boxes predicted by the foreground detection RCNN. As these foreground boxes 

represent the final boxes, there is no need for further refinement. 
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Achieving this objective is straightforward. The box head of an RCNN consists of two 

independent branches: one for box refinement and another for box classification. When the boxes 

are input into the box head, it generates two outputs: the classification and adjustment parameters 

for the input boxes. To disable the box refinement function of the box head, it is merely necessary 

to discard the box adjustment parameters. 

Track head 

The study utilizes the Global Tracking Transformer (GTR) [9] for foreground tracking. 

Besides leveraging the cross-attention weights of current and prior objects, GTR also incorporates 

a box-trajectory IoU tracker. This IoU tracker can boost tracking accuracy, particularly at high 

frame rates. However, to demonstrate the standalone efficiency of GTR in foreground box tracking, 

we disable the IoU tracker in the inference stage. 

4. EXPERIMENTS 

4.1  Datasets 

Combined dataset of LVIS and COCO 

Both LVIS [10] and COCO [11] datasets are widely used in the field of object detection. The 

COCO 2017 training and validation sets contain roughly 118,000 and 5,000 images, respectively, 

across 80 classes. Conversely, LVIS adopts the same image set as COCO 2017 but significantly 

expands the range of object classes available in COCO by incorporating over 1,203 object classes. 

Another difference between these two datasets lies in their class distribution. COCO has a 

relatively balanced instance count across its 80 categories, while LVIS exhibits a "long-tailed" 

distribution in which a few classes have many instances and many classes have few instances. 

The combined dataset of LVIS and COCO was first introduced in the paper of TAO. The 

authors added COCO annotations to every image in the LVIS dataset. To prevent redundancy, they 

eliminated COCO annotations that had an IoU greater than 0.7 with an LVIS annotation. They 

discovered that training on a combination of COCO and LVIS annotations yielded a substantial 

enhancement in detection quality. This improvement was especially pronounced for the class of 

people in comparison to training solely on the LVIS dataset. 
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TAO 
TAO [12] is a large-scale benchmark for object tracking in video data. Its training, validation, 

and testing sets have approximately 500, 1,000, and 1,500 videos, respectively. These videos are 

captured across a wide range of environments, enhancing the diversity of this benchmark. Each 

video incorporates 40 annotated frames at the rate of 1 FPS. TAO adopts 488 classes out of the 

1,203 available from LVIS and also in the "long-tailed" distribution setting. The diversity of object 

classes within TAO allows the benchmark to cover a comprehensive range of object tracking 

scenarios. 

CDnet 2014 

CDnet 2014 [7] is the largest dataset available for foreground segmentation. It contains 53 

videos across 11 distinct categories, each presenting unique challenges such as bad weather, 

dynamic backgrounds, and night videos. The diversity of CDnet 2014 makes it an ideal choice for 

algorithm validation. The dataset has 159,278 frames, of which 91,435 have been provided with 

ground-truth foreground masks. Prior to training, we employed SuBSENSE to preprocess each 

video, generating background frames for each image. 

However, CDnet 2014 wasn't specifically designed for deep learning research. Consequently, 

it doesn't separate the data into training and setting subsets. Therefore, we randomly divided the 

labeled images into training and testing sets using a 7:3 ratio. One noteworthy exception is the 

Pan-Tilt-Zoom (PTZ) category, which we excluded from the training set. This decision was made 

because, much like most foreground detection models, the Hybrid-RCNN model isn't able to 

handle panning cameras. 

4.2 Training and Evaluation 

The training process for the Hybrid-RCNN model is composed of three stages. In the initial 

two stages, the focus is on training the object detection RCNN. Following this, the foreground 

detection RCNN will be trained in the third stage. 

The training of the object detection RCNN closely follows the methods presented in the paper 

of the GTR. During the first stage, the object detection RCNN is pretrained exclusively in detection 

mode utilizing a combined dataset of LVISv1 and COCO. 

In the second stage, the track head, also known as the GTR, started participating in the training. 

Adhering to the training strategy outlined in GTR, static image datasets are employed, augmented 
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with artificial video clips generated by data augmentation techniques. Specifically, zooming and 

translation are applied to an image, which then serve as the start and end frames of a video. 

Through linear interpolation of these images and their respective annotations, a smooth video clip 

is synthesized. The combined dataset of LVISv1 and COCO continues to be utilized for network 

training throughout this stage. 

The third stage is devoted to training the foreground detection RCNN. Prior to training, a 

duplicate of the object detection RCNN's backbone is made to serve as the backbone of the 

foreground detection RCNN. Given that the RPN of the object detection RCNN will be discarded 

during the inference stage, we directly allocate the RPN of the object detection RCNN to the 

foreground detection RCNN. Training and evaluation of the foreground detection RCNN is 

conducted using the CDnet 2014 dataset. 

After training, the object detection RCNN yields 34.5 mAP on the LVISv1 validation set and 

20.3 mAP on the TAO validation set. On the other hand, foreground detection RCNN achieves 

0.90 F-measure on the CDnet 2014 dataset. 

4.3 Experiments on the Railroad Crossing Dataset 

To demonstrate that the proposed Hybrid-RCNN is better than the object detection types of 

networks in railroad crossing monitoring, the popular object detection network Mask-RCNN [4], 

which is well-known for its superior performance, is selected to compare with the proposed 

Hybrid-RCNN. The Mask-RCNN [4] is trained by the COCO dataset, which has 80 classes. 

Figure 3 shows the example detection results of both Hybrid-RCNN and Mask-RCNN. 

While Mask-RCNN only detects some ordinary objects such as pedestrians and cars, it 

unfortunately failed to detect a cone and wheelbarrow, resulting in false-negative errors. Also, 

Mask-RCNN detects many background objects, causing serious false-positive errors. On the 

contrary, the proposed weakly supervised foreground segmentation network Hybrid-RCNN 

successfully detects all the objects that do not belong to the railroad crossing as foreground and 

achieves high precision and recall. Therefore, the proposed Hybrid-RCNN outperforms Mask-

RCNN in the railroad crossing monitoring task. 
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Figure 3: Example detection results on the railroad crossing dataset (from top to bottom: 

Hybrid-RCNN, Mask-RCNN 

5. CONCLUSIONS 

In this research, we introduced a novel Hybrid-RCNN model, an innovative approach that 

integrates the advantages of both foreground segmentation and object detection methodologies, 

specifically for monitoring railroad crossings. Our design leverages the distinct capabilities of 

these two techniques to create a more effective and reliable surveillance system. The experimental 

validation conducted on a dedicated railroad crossing dataset highlights the robust performance of 

the proposed Hybrid-RCNN network in various conditions. This model is particularly adept at 

identifying any unauthorized or unexpected objects within the railroad crossing area. Notably, the 

Hybrid-RCNN model demonstrates superior performance compared to traditional object 

detection-based models such as Mask-RCNN. The effectiveness of Hybrid-RCNN in detecting 

anomalies and ensuring safety at railroad crossings is evident from its ability to accurately identify 

and segment objects that are not typically part of the railroad environment. This enhancement in 

detection capability is a significant step forward in the application of artificial intelligence in public 

safety and infrastructure monitoring. 
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